

Butterfly Valves Series SuperAlloy Valves

Double Offset Butterfly Valves

General Highlights

Applicable Seat Materials

PTFE

RPTFE (15% Glass Filled)

RPTFE (25% Carbon Filled)

Viton

Other materials can be supplied upon request

Specifications

Anti-static

Blowout-proof stem

V type packing, reliable packing seals

Zero leakage

Ends: Wafer, Lug

Uni-directional/Bi-directional sealing

Operation: Level, Gear, Electric, Pneumatic actuator

Bare shaft with ISO 5211 top mounting flange (when specified)

Double offset design to easily replace the seat

Lockable design available for Gear operation

ASME Butterfly valve as citing		
Design	API 609	
Testing	API 598	
Face to face dimension	API 609	
Flange ends	ASME B16.5, ASME B16.47 Series A	
Pressure temperature rating	ASME B16.34	
Visual Inspection of casting	MSS-SP-55	

Size/Pressure Produce Range		Omerchen
Pressure	Wafer/Lug	Operator
150LB	2" up to 100"	2"~4" Lever: 5"~100" Gear
300LB	2" up to 60"	2"~4" Lever: 5"~60" Gear
600LB	On Application	

Notes:

^{*}Other unspecified standards and sizes are available upon request.

Double Offset Butterfly Valves

Design Features

Double Offset Design

- This feature keeps the valve seat away from the disc when the disc starts rotating around the stem.
- Eliminate the wear on the seat and thus increases the life of the seat.
- Offers excellent throttling capabilities, which makes it an ideal choice for flow control applications.

Blowout-Proof Stem

- The stem has a split ring to protect the stem from blowout.
- Whether the valve with or without pressure, release the packing bolts, stem will not blowout.

V Type Gland Flange

It can prevent packing shift under pressure.

Packing Design

- · Packing is online adjustment.
- · Wedge-shaped packing, the sealing will be more reliable.

Double Belleville Spring Design

Belleville spring loaded can always protect packing sealing.

Seat Design

- Soft seat valve designs are uni-directional or bi-directional.
- The seat is retained by the seat retainer, which prevents the seat from blowing out during operation.
- Replace the seat without removing the disc and stem, it is easy to maintain.

Pin Design

 With a pin to eliminate gap between disc and stem, so that the disc will not be moved after pressure.

Locking Device

- Level operation with locking device to avoid misuse.
- Gear operation with the locking device is also available upon request.

Adjusting Bolt

Others

- Short face-to-face dimension, low cost and light weight.
- Easy installation